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Abstract. We propose the Small Loop Problem as a challenge for biologically 
inspired cognitive architectures. This challenge consists of designing an agent that 
would autonomously organize its behavior through interaction with an initially 
unknown environment that offers basic sequential and spatial regularities. The 
Small Loop Problem demonstrates four principles that we consider crucial to the 
implementation of emergent cognition: environment-agnosticism, self-motivation, 
sequential regularity learning, and spatial regularity learning. While this problem 
is still unsolved, we report partial solutions that suggest that its resolution is 
realistic.  
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Introduction 

We introduce a benchmark to evaluate artificial agents with regard to four principles of 
emergent cognition. We named this benchmark the Small Loop Problem. In a review of 
benchmarks for artificial intelligence, Rohrer [11] argued that a benchmark can 
constitute a formal statement of one’s research goals. Accordingly, this paper presents 
a statement and an argumentation in favor of four principles that we consider 
fundamental to emergent cognition: (a) environment-agnosticism, (b) self-motivation, 
(c) sequential regularity learning, and (d) spatial regularity learning.  

The principle of environment-agnosticism (a) was proposed to account for the idea 
that we do not encode our knowledge of the environment in the agent [9]. For example, 
we do not implement logical rules that would exploit predefined semantics associated 
with sensory input, we do not provide the agent with a model of its environment in the 
form of a set of predefined states, nor do we implement a reward function that would 
generate a reward value depending on predefined states of the world. Instead, we 
expect environment-agnostic agents to learn the semantics of sensorimotor information 
and the ontological structure of their world by themselves. 

Our approach to self-motivation (b) relates to the notion of a Discrete Time 
Decision Process consisting of learning a policy function P(t) that tends to maximize a 
value function V(t) over time. Such a process implements motivation because the agent 
learns behaviors that fulfill an innate value system. This view assumes that such an 
innate value system was selected through phylogenetic evolution in the case of natural 
organisms to favor the survival of the organism and of its species. In the Small Loop 



Problem, the agent has a set of 6 possible actions A={a1, … a6} and a set of two 
possible observations O={o1, o2} (binary feedback). We define the set of possible 
interactions I = AO as the set of the 12 tuples i = [aj,ok] that associate a possible 
action with the possible observation resulting from that action. Each interaction i has a 
predefined numerical value vi. The value function V(t) equals the value vi of the 
interaction i enacted on step t. The policy function must learn to choose the action aj at 
each time step t that would maximize the value function in an infinite horizon.  

Note that this implementation of motivation differs from traditional reinforcement 
learning [13] in that the value is not given by a separate reward function that computes 
the reward as a function of predefined environment states (which would violate the 
environment-agnosticism principle). Instead, the value is associated with the mere fact 
of enacting the interaction. Because the value is internalized in the agent rather than 
defined in reference to external states identified by the designer, we argue that the 
agent has self-motivation as opposed to extrinsic motivation [9]. When adapted to this 
formalism, traditional reinforcement learning algorithms can learn simple dependencies 
between interactions within the set of interactions I, but they fail to learn the temporal 
and spatial regularities that they need to learn to fully solve the Small Loop Problem. 

The principle of sequential regularity learning (c) follows from the fact that the 
agent must discover, learn, and exploit temporal regularities in its interaction with the 
environment to maximize the value function V(t). Doing so without any prior 
assumption on the environment remains an open question. For example, Partially 
Observable Markov Decision Processes (POMDPs) require prior knowledge of a state 
evaluation function to assess believed states from observations [1]. The Small Loop 
Problem consists of implementing an agent that learns hierarchies of temporal 
regularities without making such assumptions on the environment, to remain compliant 
with the environment-agnosticism principle.  

Finally, the agent must discover, learn, and exploit spatial regularities that exist in 
its “body” structure and in the structure of the environment (d). Many neuroanatomists 
who study the evolution of animal brains argue that organization of behavior in space is 
a primordial purpose of cognition [e.g., 4]. Natural organisms generally have inborn 
brain structures that prepare them to deal with space (the tectum or superior colliculus). 
These observations suggest that spatial regularity learning is a key feature of emergent 
cognition. We designed the Small Loop Problem to investigate how this feature could 
be integrated into a biologically inspired cognitive architecture with the other principles 
presented above. 

Section 1 describes the Small Loop Problem in detail. Section 2 reports our partial 
solution that implements environment-agnosticism, self-motivation, and sequence 
learning. Section 3 presents how we envision coupling our current solution with spatial 
regularity learning to move toward the full solution. The conclusion recapitulates the 
challenges raised by the Small Loop Problem. While this problem may seem simplistic, 
it is still unsolved, and, we argue, it is important for the study of emergent cognition.  

1. The small loop problem 

The Small Loop Problem consists of implementing an artificial agent that would 
"smartly" organize its behavior through autonomous interaction with the Small Loop 
Environment. The Small Loop Environment is the loop of white squares surrounded by 
green walls shown in Figure 1. 



 
Figure 1. The Small Loop Platform in NetLogo. 

The set of possible actions (A) contains the 6 following actions: try to move one 
square forward (a1), turn 90° left (a2), turn 90° right (a3), touch front square (a4), touch 
left square (a5), touch right square (a6). Each action returns a single bit observation as 
feedback (O = {o1, o2}). The 10 possible interactions are then: step ([a1,o1]), bump 
([a1,o2]), turn left ([a2,o1]), turn right ([a3,o1]), touch front/left/right empty ([a4,o1]/ 
[a5,o1]/[a6,o1]), touch front/left/right wall ([a4,o2]/[a5,o2]/[a6,o2]). Note that turn actions 
always return feedback o1, which makes 10 interactions rather than 12. 

The principle of environment agnosticism implies that the agent has no initial 
knowledge of the meaning of interactions. That is, an interaction’s label is meaningless 
to the agent and any label [aj,ok] can be swapped with any other label [am, on] and still 
give rise to the same behavior when the agent is rerun.   

The experimenter presets the values of interactions before running the agent (using 
the controls shown in Figure 1). We specify the following reference values: step: 5; 
bump: -10; turn: -3; touch (empty or wall): -1. With these values, we expect the agent 
to learn to maximize moving forward, and avoid bumping and turning. To do so, we 
expect the agent to learn to use touch to perceive its environment and only turn in 
appropriate categories of situations (because touch has a less negative value than bump 
or turn). Additionally, if there is a wall ahead, the agent should touch on the side and 
turn towards that direction if the square is empty, so as to subsequently move forward.  

Note that on each decision cycle, the best action to choose does not only depend on 
a single previous interaction but may depend on a sequence of several previous 
interactions and on the possibility to enact several next interactions. This makes the 
Small Loop Problem suitable to demonstrate sequential regularity learning. The 
highest-level most satisfying sequence consists of making a full tour of the loop, which 
can be repeated indefinitely. The value of this sequence is equal to 5 x 12 (move 
forward) -3 x 6 (turn) = 42, corresponding to 2.33 points/step. 

The principles of self-motivation together with environment-agnosticism imply 
that the agent must adapt to any set of values. Trivial examples are those in which 
positive values are associated with turn or bump or touch: the agent would learn to 
keep spinning in place, or bumping, or touching indefinitely. The Small Loop Problem 
thus consists of implementing a mechanism that tends to enact interactions with high 
values and to avoid interactions with negative values without any presupposition of 
what these interactions mean in the environment. To solve this problem, the agent must 
learn hierarchies of sequential regularities so it can use certain interactions to gain 
information to anticipate the consequences of later interactions.  

Section 2 shows that a purely sequential learning mechanism can partially solve 
this problem. For a “smarter” organization of behavior, we, however, expect the agent 
to exploit spatial regularities. The agent should construct a self model that organizes 
interactions spatially. For example: touch left and turn left concern the agent’s left side, 



touch front, move forward, and bump concern the agent’s front. The agent should also 
categorize situations in the environment with regard to their spatial structure relative to 
the agent’s position, for instance the categories: left corners, right corners, and long 
edges of the loop. This need for spatial categorization makes the Small Loop Problem 
suitable to demonstrate spatial regularity learning. 

2. The sequential solution 

We have reported an algorithm that brings a partial solution to a similar problem [7, 8]. 
We now offer a NetLogo [14] simulation online1 to demonstrate the behavior of this 
algorithm on the Small Loop Environment. This demonstration shows that the agent 
usually learns to avoid bumping after approximately 300 steps and reaches a stable 
satisfying behavior that consists of circling the loop after approximately 600 steps. This 
demonstration also shows that the agent has difficulties in the upper right area of the 
loop because of the inverted corner.   

Figure 2 shows the trace of an example run. This trace shows that the interactions 
were unorganized and poorly satisfying in the agent’s terms until step 150. From step 
190 on, the agent learned to touch ahead before trying to move forward, but it still got 
puzzled in the upper right area around step 220 and 270. In this particular instance, it 
learned to characterize left corners by the sequence that leads to them when circling the 
loop counterclockwise: “touch left empty, turn left, move forward, touch front wall”. In 
this left corner context, the agent learned to chose turn right (steps 318, 354, 390), 
which allowed it to engage in full tours of the loop. 

 
Figure 2. Example activity trace of an agent that learns sequential regularities. 

In the trace in Figure 2, Tape 1 represents the interactions: touch empty (white 
squares), touch wall (green squares), turn (half-circles), move forward (white triangles), 
bump (red triangles); the upper part represents interactions to the left, the lower part 
interactions to the right. Tape 1 shows that the agent learned to avoid bumping after 
step 276 by always touching ahead before moving forward. Tape 2 represents the 
interactions’ values as a bar-graph (green when positive, red when negative); it shows 
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that the agent got more consistently positive interactions from step 290 on. Tape 3 
represents the level of the enacted sequence in the hierarchy of learned sequences; it 
shows that the agent gradually exploited higher-level sequences. The value obtained 
when the behavior was stabilized was of 5x12 (move forward) – 3x6 (turn) – 1x17 
(touch), corresponding to 0.71 points/step. 

3. Towards the spatio-sequential solution 

To give an idea of what would constitute a full solution, we started to implement a 
mechanism of spatial awareness. To do so, we endowed the agent with a spatial 
memory that kept track of the spatial location where interactions were enacted. The 
algorithm updates the spatial memory by translating its content when the agent moves 
forward and rotating it when the agent turns (a basic form of Simultaneous Localization 
And Mapping, SLAM). This solution, however, violates the principle of agnosticism 
because it assumes the relation between interactions and transformations in spatial 
memory. We also hard-wired the agent’s “self model” to the spatial memory. For 
example, we hard coded the spatial position of the different touch interactions relative 
to the agent (left side, front, right side).  

In essence, the algorithm learns bundles of interactions that represent observable 
phenomena in the environment. We define a bundle as the set of interactions afforded 
by a phenomenon [6]. The Small Loop Problem provides two kinds of observable 
phenomena: empty squares and walls. The agent constructs bundles gradually as it 
explores the environment. Over time, the agent recognizes the phenomena that 
surround it and represents them by bundles localized in the agent’s spatial memory. In 
turn, bundles in spatial memory generate weighted propositions (positive or negative) 
to enact the interactions that they contain. This mechanism increases the speed of the 
agent’s adaptation because it helps the agent select interactions adapted to its spatial 
context. Figure 3 shows the effects of this mechanism in an example. A video is 
available online to show the entire run, the sequential trace, and the content of the 
spatial memory dynamically2. 

 
Figure 3. Example activity trace of an agent that learns spatial and sequential regularities. 

In Figure 3, tapes 1 to 3 correspond to the same as in Figure 2. Tape 1 shows that 
the agent bumped only four times (steps 13, 28, 31, and 33). Tape 4 represents the four 
surrounding squares in the agent’s spatial memory (squares whose content is unknown 
are gray). Tape 5 represents the construction of bundles over time (gray rounded 
rectangles that contain interactions). The upper part of Figure 3 shows snapshots of the 

                                                             
2 http://e-ernest.blogspot.fr/2012/04/ernest-112.html 



agent’s spatial memory at different steps. Gray circles represent bundles localized in 
spatial memory. These circles are fading to represent decay in spatial memory. 

On steps 1 to 3, the agent successively touched the three squares surrounding it. 
On step 4, it moved forward. Because the touching forward made on step 2 and the 
moving forward on step 4 concerned the same spatial location, these interactions were 
bundled together to represent an empty square phenomenon. On step 5, a new touching 
forward activated an empty square bundle in front of the agent. The interaction move 
forward, now belonging to this bundle, generated additional positive support to move 
forward (in the agent’s decisional mechanism). In a similar way, the interaction 
touching front wall and bumping were bundled together on step 13. On step 19, the 
touching front wall activated the newly-created wall bundle in front of the agent. The 
bump interaction, then belonging to the wall bundle, generated negative support for 
trying to move forward, preventing the agent from bumping into the wall. On step 96 
(not in Figure 3), the learned sequence turn right – move forward was added to the 
empty square bundle, which led the agent to subsequently enact this sequence when an 
empty square was again recognized on the right. This experiment shows that this 
mechanism significantly improves the agent’s management of the upper right area. The 
agent started to circle the loop on step 70 (clockwise). The value obtained after 
stabilization was again of 0.71 points/step.  

This example illustrates two limitations that we expect the full solution to solve. 
(a) The average value per step obtained after the learning phase should tend to the 
highest value made possible by the initial settings (2.33 with the settings proposed in 
Section 1). This requires implementing more elaborated learning mechanisms that 
make the agent appropriately renounce touching when the structure of the environment 
is better known. (b) The agent’s “self-model” (i.e., the effects and positions of 
interactions in space) should not be assumed but rather learned. We, nonetheless, 
consider it valid to implement a spatial memory that assumes the two-dimensional grid 
structure of the environment. This assumption is justified by the fact that natural 
organisms have inborn brain structures that prepare them to deal with the spatial nature 
of their environment (e.g., the superior colliculus). The purpose of the Small Loop 
Problem is, however, not to have the agent learn a full map of its environment but to 
adapt its behavior to local temporal and spatial context. Therefore, we posit that the 
area covered by the spatial memory should be smaller than the full environment space. 

4. Conclusion 

We propose the Small Loop Problem as a benchmark to evaluate agents that implement 
four principles of emergent cognition: environment agnosticism, self-motivation, 
sequential regularity learning, and spatial regularity learning. This benchmark contrasts 
with most existing benchmarks for unsupervised learning agents [e.g., 5, 12] in that it 
does not involve a final goal to reach. Instead, the agent’s self-motivation comes from 
the fact that primitive interactions have different values. 

We present two partial solutions. The first partial solution is based on an original 
sequential decision process. It demonstrates that the agent can organize its behavior by 
learning and exploiting sequential regularities of interactions without presuppositions 
on the meaning of interactions. The second partial solution illustrates an architecture 
that associates the sequential decision process with a spatial regularity learning 
mechanism. In its current version, this solution, however, conflicts with the 



agnosticism principle because it requires assumptions on the agent’s self model. The 
Small Loop Challenge requires eliminating these assumptions. 

Different solutions exist to learn spatial structures from uninterpreted sensors [e.g., 
10], to learn self models [e.g., 3], and to categorize situations on the basis of self-
motivation [e.g., 2]. Yet, the question of integrating these solutions together remains 
unsolved. Studies of natural organisms such as insects and archaic vertebrates suggest 
that these organisms manage to solve these problems through fundamental mechanisms 
of cognition whose replication in an artificial cognitive architecture remains a 
challenge. The Small Loop Problem offers a simple formalization of this challenge, 
which hopefully makes its resolution realistic. Solving this challenge will open the way 
to developing self-motivated agents capable of dealing with more complex 
spatiotemporal regularities in their interactions with the environment3. 
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