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Abstract. Metacat is a model of analogy-making and creativity that
extends the earlier Copycat model by incorporating mechanisms that
enable the program to compare and contrast idealized analogies in
an insightful way, including analogies suggested to it by the user.
This amounts to making analogies between analogies. This paper
outlines the program’s architecture, and presents several examples
of the kinds of comparisons it is capable of making.

1 INTRODUCTION

The Copycat computer model of analogy-making was originally
developed by Hofstadter and Mitchell as an investigation into the
cognitive mechanisms underlying human creativity and perception
[9, 8, 17]. Recent work on this project has focused on extending
the model by incorporating mechanisms that enable the program to
monitor its own behavior as it searches for answers to analogy prob-
lems [15]. This gives the program a much deeper level of insight into
how it arrives at its answers, which in turn enables it to compare and
contrast the analogies it makes on the basis of their similarities and
differences—in other words, to make analogies between analogies.
This paper describes the architecture of the program, called Metacat,
and presents several examples of the kinds of comparisons between
analogies it is capable of making.

Copycat and Metacat are part of a broader ongoing research pro-
gram aimed at computationally modeling the psychological pro-
cesses responsible for human creativity. This is, of course, a very
ambitious goal, given the subtlety and complexity of human cogni-
tion. Over the years, several related projects have been developed by
Hofstadter and his colleagues, all of which have involved building
computer programs that operate in carefully-designed microworlds
[9]. One such project, called Letter Spirit, uses an architecture sim-
ilar to that of Copycat and Metacat, but applies it to the world of
visual letter perception and design. Initial work on this project con-
centrated on the perception and categorization of gridletters, highly
stylized letterforms of the lowercase roman alphabet drawn on a two-
dimensional grid consisting of short line segments [16]. Designing a
full set of gridletters from a to z in a single abstract, yet well-defined
style is a challenging act of artistic creation. The current goal of the
Letter Spirit project is to develop a program capable of perceiving the
visual style common to an initial set of gridletters and then designing
the rest of the alphabet in the same style, with the ultimate goal being
for the program to create novel and interesting styles completely on
its own. This very ambitious project is intended to model many of
the most important aspects of creative artistic design.
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A key element of the Letter Spirit architecture is the “central feed-
back loop of creativity”, in which the program not only creates new
letterforms in a particular style, but also judges the quality of the let-
terforms it creates, in order to assess how well they actually reflect
the desired style, possibly revising them as a result [16]. This con-
tinual cycle of creation, assessment, and revision is essential to the
design process, and ought to play a key role in any faithful computer
model of creativity. Recent work on Letter Spirit focuses on imbuing
the program with this type of ability to step back and evaluate its own
performance, and is closely related to the central issues of Metacat
[18]. See [5] for a good overview of other work in AI on modeling
creativity.

Copycat and Metacat operate in a microdomain—a tiny, idealized
world explicitly designed to isolate the essential aspects of analogy-
making and creativity by stripping away as many insignificant “real-
world” details as possible. This act of idealization brings out the deep
issues in stark relief, rendering them accessible to careful, controlled
study. The raw material of the domain consists of 26 abstract ob-
jects, represented as lowercase letters for convenience, among which
only three relations are meaningful: sameness, predecessorship, and
successorship. All letters except a have an immediate predecessor,
and all except z have an immediate successor. All other information
pertaining to letters has been factored out, such as their shapes or
semantic connotations. Analogies are stated in terms of short letter-
strings, which can be thought of as idealized situations. For exam-
ple, “abc) abd; mrrjjj) ?”. Despite its apparent simplicity, this
domain harbors an exceedingly rich variety of subtle analogy prob-
lems, in which many surprisingly creative and non-obvious answers
are possible.

The Copycat architecture has been discussed at length elsewhere
[9, 17], so details will be omitted here. Briefly, the program con-
sists of a long-term memory of concepts about the letter-string world,
called the Slipnet, together with a short-term memory for percep-
tual structures, called the Workspace. In the Workspace, small non-
deterministic agents called codelets examine the letters of an anal-
ogy problem and build up structures around the letters representing a
particular interpretation of the problem. Codelets look for sameness,
successor, or predecessor relationships between letters, often chunk-
ing them together into groups based on a common relationship (for
example, creating a “sameness group” from the three j’s in mrrjjj, or
chunking the individual letters of abc into a “successor group”). The
program’s high-level behavior emerges in a bottom-up manner from
the collective actions of many codelets working in parallel, in much
the same way that an ant colony’s high-level behavior emerges from
the individual behaviors of the underlying ants, without any central
executive directing the course of events.

Guiding the search for a mutually-consistent set of structures are



concepts in the Slipnet, which become activated to different degrees
depending on the activity in the Workspace. This activation may
spread to neighboring concepts, and strongly influences codelet de-
cisions, resulting in top-down pressure that guides the program in its
search for a good interpretation of a problem.

2 THE ARCHITECTURE OF METACAT

Since Metacat is an extension of the Copycat model, its architecture
includes all of Copycat’s main architectural components, such as the
Workspace, the Slipnet, and the mechanisms for codelet processing.
It also includes three new components: the Episodic Memory, the
Themespace, and the Temporal Trace.

2.1 The Episodic Memory

Unlike Copycat, Metacat is able to remember its problem-solving
experiences over time. When the program discovers a new answer, it
pauses temporarily to display the answer along with the Workspace
structures that gave rise to it, instead of simply quitting. Together,
these structures represent a way of interpreting the analogy problem
that yields the answer just found. This information is then packaged
together into an answer description and stored in Metacat’s Episodic
Memory, after which the program continues searching for alternative
answers to the problem. Gradually, over time, a series of answer de-
scriptions accumulates in memory, each one containing much more
information than just the answer string itself.

The most important information stored in an answer description
consists of structures called themes, which represent the key ideas
underlying the answer. The themes in an answer description provide
a basis for comparing and contrasting the answer to other answers
stored in memory. Furthermore, Metacat may be reminded of similar
answers it has encountered in the past if the themes associated with
a newly-discovered answer, acting as a memory retrieval cue, match
those of some previously stored answer description sufficiently well.
The pattern of themes in an answer description serves as an index
under which the answer can be stored and retrieved from memory.

2.2 The Themespace

Themes are created in Metacat’s Themespace, and consist of pairs
of Slipnet concepts. For example, a theme representing the idea of
alphabetic-position symmetry between a and z is composed of the
Slipnet concepts Alphabetic-Position and opposite. In some ways,
themes act like ordinary Workspace structures. They are not initially
present in the Themespace; rather, they are created during the course
of a run, in response to structure-building activity in the Workspace.

In other ways, however, themes act like Slipnet concepts. They
can take on various levels of activation, depending on the extent
to which the ideas they represent play a role in the program’s cur-
rent interpretation of the problem. A theme’s activation may de-
cay over time, and may be influenced by the activation levels of
other themes. Like Slipnet concepts, themes can, under certain con-
ditions, exert strong top-down pressure on perceptual activity occur-
ring in the Workspace. In fact, themes can assume both positive and
negative levels of activation. Positively-activated themes encourage
the building of Workspace structures compatible with the themes,
while negatively-activated themes encourage the creation of alterna-
tive structures.

2.3 The Temporal Trace

In addition to the Themespace and Episodic Memory, Metacat’s ar-
chitecture includes a separate short-term memory called the Tempo-
ral Trace (or just the Trace for short) that serves as the focus for
self-monitoring. Like the Themespace, the Temporal Trace accumu-
lates information over the course of a single run. The Trace stores an
explicit temporal record of the most important processing events that
occur during the course of solving an analogy problem. Examples of
such events include recognizing a key idea pertaining to the prob-
lem (by noticing the strong activation of a theme or concept), hitting
a snag (such as attempting to take the successor of z, as in the prob-
lem “abc) abd; xyz) ?”), or discovering a new answer. Of course,
a large number of events of all “sizes” occur during the processing
of almost any analogy problem, ranging from local “micro-events”
such as individual codelet actions to global “macro-events” such as
the discovery of new answers. However, only those events above a
threshold level of importance get represented in the Trace. This al-
lows Metacat to filter out all but the most significant events, giving
the program a very selective, high-level view of what it is doing.

Once processing events have been explicitly represented in the
Trace, they are themselves subject to examination by codelets. This
allows Metacat to perceive patterns in its own behavior in much the
same way that Copycat perceives patterns in its letter-strings—via
codelets looking for relationships among perceptual structures. In
Metacat’s case, these perceptual structures include both Workspace
structures and the “reified” processing events in the Trace. When a
new answer is found, an answer description can be formed by ex-
amining the temporal record to see which events contributed to the
answer’s discovery.

This approach is similar in flavor to work on derivational analogy,
in which the trace of a problem-solving session is stored in memory
for future reference, together with a series of annotations describing
the conditions under which each step in the solution was taken [3,
20]. In Metacat’s case, however, the information in the Trace is used
as the basis for constructing an abstract description of the answer
found, rather than being permanently stored itself.

3 ANSWER JUSTIFICATION

Unlike Copycat, Metacat is capable of evaluating the relative
strengths and weaknesses of analogies suggested to it by an out-
side agent, in addition to judging the analogies it makes on its own.
In other words, Metacat can not only discover answers to analogy
problems, it can also justify answers on their own terms, even if the
program itself didn’t come up with them. This amounts to “working
backwards” from a given answer toward an insightful characteriza-
tion of it, in order to understand why it makes sense. Once an answer
has been understood in this way, it can be compared and contrasted
with other answers that the program has either discovered previously
itself, or been shown by someone else.

This type of “hindsight understanding” presents little difficulty for
humans. People who are asked to solve the problem “abc) abd;
mrrjjj) ?”, for example, may not think of the answer mrrjjjj, even
when given an unlimited amount of time. However, as soon as this
answer is suggested to them, they have no trouble seeing why it
makes sense, even though they didn’t think of it themselves. In a
similar vein, suggesting the somewhat “tongue-in-cheek” answer abd
usually elicits a few chuckles from people, indicating that they can
see how it “makes sense”, although few people give this answer on
their own [17]. This is not to say that every suggested answer can be



readily understood in retrospect (for example, a person might never
figure out the justification for an answer such as mssjjj), but for many
non-obvious answers, no additional explanation beyond just the an-
swer itself is needed.

When Metacat runs in “justify mode”, it takes a problem together
with an answer supplied by the user and attempts to discover a way
of interpreting the problem in which the given answer makes sense.
To do so, it begins by building up perceptual structures among the
letter-strings, as usual. This “bottom-up” approach, however, may
lead it to build an inconsistent interpretation of the problem that does
not support the answer in question. Nevertheless, examining different
parts of this interpretation may suggest new ideas to try out. Metacat
can explicitly focus on these ideas, represented as patterns of themes,
by clamping the themes with strong positive activation. The resulting
top-down pressure forces the program to reorganize its interpretation
of the problem in accordance with these ideas, leading to a new—and
perhaps more coherent—way of looking at things.

For example, when Metacat is asked to justify the answer wyz to
the problem “abc) abd; xyz) ?”, it typically begins by building
straightforward mappings in which all the strings are seen as going in
the same direction. In addition, it may create a “top rule” describing
the abc) abd mapping as Change letter-category of rightmost letter
to successor and a “bottom rule” describing the xyz)wyz mapping
as Change letter-category of leftmost letter to predecessor. This state
of affairs is shown in Figure 1.

Figure 1. An inconsistent interpretation of the answer wyz.

Although each of the three string mappings making up this in-
terpretation is locally consistent when considered in isolation, to-
gether they do not make sense at a global level. The letters c and
x are not seen as corresponding to each other, yet they are both
identified by the rules as being the objects that change in their re-
spective strings (the c to its successor and the x to its predeces-
sor). Comparing the two rules to each other, however, suggests
the idea of rightmost–leftmost symmetry, as well as successor–
predecessor symmetry. This idea can be captured by a set of themes
such as String-Position: opposite, Direction: opposite, and Group-
Type: opposite. Metacat can explore the ramifications of this idea by
clamping the associated themes at full activation in the Themespace.
The resulting positive thematic pressure strongly promotes the cre-
ation of new structures compatible with the idea of mapping abc and
xyz onto each other in a crosswise fashion, and significantly weakens

Figure 2. The final consistent interpretation of wyz.

existing structures incompatible with this idea, such as the a–x and
c–z bridges. The net effect is that the original mapping between abc
and xyz shown in Figure 1 is swiftly reorganized by codelets into a
new mapping consistent with the activated themes.

Figure 2 shows the final, globally consistent interpretation, in
which c and x are seen as corresponding. In addition, the previously
unnoticed alphabetic-position symmetry between the letters a and z
has been identified as a result of the increased attention focused on
these objects by top-down thematic pressure. Consequently, the final
answer description for wyz includes an Alphabetic-Position: opposite
theme.

4 ANSWER COMPARISON

As an example of how the similarities and differences between
analogy problems can be understood in terms of themes, consider
again the answer wyz just described for the problem “abc) abd;
xyz) ?”. This answer relies on an interpretation of the problem
in which abc and xyz are seen as going in opposite directions, abc
and abd are seen as going in the same direction, and abc) abd
is described by the rule Change letter-category of rightmost letter
to successor. At the crux of this interpretation lies the alphabetic-
position symmetry of the letters a and z, which provides the justifica-
tion for perceiving abc and xyz as “mirror images” of each other.
These ideas can be represented by a collection of structures that
includes Alphabetic-Position: opposite and String-Position: opposite
themes describing the relationship between abc and xyz, a String-
Position: identity theme describing the relationship between abc and
abd, and the aforementioned rule. Together, these structures consti-
tute wyz’s answer description in memory.

In contrast, Figure 3 shows Metacat’s Workspace after it has found
the answer xyd. In this interpretation of the problem, abc and xyz are
seen as going in the same direction, with letters in identical string
positions corresponding to each other. The strings abc and abd map
onto each other in a similar fashion, as shown by the horizontal
bridges across the top, and the c in abc is seen as changing liter-
ally to d, as indicated by the rule Change letter-category of right-
most letter to ‘d’. These are the essential ingredients of the answer
xyd, and they can be explicitly represented by an answer description
that includes String-Position: identity themes and the above rule. The



Figure 3. An interpretation yielding the answer xyd.

idea of alphabetic-position symmetry does not arise, so there is no
Alphabetic-Position: opposite theme involved.

Now consider the problem “rst) rsu; xyz) ?”, which is similar
in many respects to the problem “abc) abd; xyz) ?”. In particu-
lar, the answers xyu and wyz are possible, based on many of the same
considerations that arose in the earlier problem. The answer xyu de-
pends in part on seeing rst and xyz as going in the same direction,
while the answer wyz depends on seeing these strings as going in
opposite directions. However, in this problem there is far less justi-
fication for seeing rst and xyz as mirror images of each other, unlike
in the previous case of abc and xyz, with their strong a–z symme-
try. Indeed, the presence or absence of alphabetic-position symmetry
is the crucial difference between the two wyz answers. Everything
else about them is the same: both involve seeing abc and xyz (or rst
and xyz) as going in opposite directions, both involve seeing abc and
abd (or rst and rsu) as going in the same direction, and both involve
viewing the abc) abd (or rst) rsu) change abstractly rather than
literally. The diminished justification for the answer wyz in this prob-
lem tends to diminish its overall quality. While arguably better than
xyu, wyz is not nearly as superior to xyu as was wyz to xyd in the
previous problem. In short, xyd and xyu play essentially identical
roles in their respective problems, and are thus of comparable qual-
ity, while the two wyz answers are quite different, even though on the
surface they appear to be identical.

In addition to these four answers, there are two other possibili-
ties worth mentioning. The answer dyz, although perhaps a bit far-
fetched, is certainly possible for the problem “abc) abd; xyz) ?”.
Seeing this answer depends on noticing the abstract symmetry be-
tween abc and xyz, and yet—somewhat ironically—taking a very
literal-minded view of the way in which c changes to d. In this case,
doing “the same thing” to xyz involves changing its leftmost letter
literally to d. The answer uyz for the problem “rst) rsu; xyz) ?”
arises in a similar manner, except that here there is no good reason
to see rst and xyz as mirror images of each other in the first place.
Just as for the two wyz answers, the key difference between dyz and
uyz lies in the presence or absence of the idea of alphabetic-position
symmetry. In other words, the way in which the two wyz answers are
analogous to each other is just like the way in which the dyz and uyz
answers are analogous to each other. Here we have a simple example
of a “meta-level” analogy in the letter-string microworld.

Table 1 shows these six answers along with some of the informa-

Problem/Answer Themes Rule

abc) abd; xyz)wyz Alphabetic-Position: opposite Abstract
String-Position: opposite

rst) rsu; xyz)wyz String-Position: opposite Abstract
abc) abd; xyz) xyd String-Position: identity Literal
rst) rsu; xyz) xyu String-Position: identity Literal
abc) abd; xyz) dyz Alphabetic-Position: opposite Literal

String-Position: opposite
rst) rsu; xyz)uyz String-Position: opposite Literal

Table 1. Six answers and their associated answer descriptions.

tion stored in their answer descriptions (for the sake of clarity, not
all of the information is shown). These descriptions bring out clearly
the similarities and differences among the various possible answers
to the two problems. For example, it is clear from examining the
themes that the crucial distinction between the first wyz answer and
dyz is whether the abc) abd change is perceived abstractly or lit-
erally (as indicated by the rule involved). The descriptions of xyd
and xyu are identical, revealing the underlying similarity between
these two literal-minded answers. The difference between the two
wyz answers lies in the presence or absence of the idea of alphabetic-
position symmetry. Furthermore, the way in which these answers dif-
fer is precisely the same as the way in which dyz differs from uyz.

This example gives the flavor of how Metacat’s answer descrip-
tions enable it to compare and contrast idealized analogies in an in-
sightful way, by analyzing the themes and other information stored
in these descriptions. Such an ability lies far beyond that of Copycat,
which has only a crude numerical measure of “quality” available as a
basis for answer comparison. In addition, Metacat’s answers can be
retrieved from memory on the basis of their stored descriptions. For
example, suppose that Metacat finds the answer xyd to the problem
“abc) abd; xyz) ?”. If it has previously encountered the answer
xyu to the problem “rst) rsu; xyz) ?”, finding xyd may remind it
of the xyu answer it has already seen—based on the strong similar-
ity between the themes characterizing xyd and the stored description
of xyu—prompting Metacat to “comment” on the similarity between
the two answers.

4.1 Program-generated commentary

As Metacat works on an analogy problem, it displays a running com-
mentary in English of its ideas and observations about the problem
and about its own “train of thought”. This narrative, which appears in
Metacat’s Comment Window, is not an event-by-event transcription
of the information in the Temporal Trace, although it corresponds
closely to the chain of events recorded there. Rather, it simply con-
sists of messages generated by codelets in a variety of circumstances
as they go about their business. Essentially, this amounts to the pro-
gram “thinking out loud” while it works on a problem. When Metacat
hits a snag, for instance, it reports this fact and briefly explains why
the snag has occurred. Upon discovering a new answer, it states its
opinion of the answer’s quality, and mentions any other answers that
happen to “come to mind” as a result. The program also mentions
when it is getting “frustrated” by a lack of progress. Furthermore,
if it hits on some new idea to try, it gives a brief assessment of the
progress achieved, in retrospect, as a result of focusing on the idea.
The program can also comment on the similarities and differences
between various answers, if asked to do so by the user.

Figure 4 illustrates the type of commentary typically generated by
the program during a run. This example shows a run of the problem
“abc) abd; xyz) ?” in which the program hits the z snag a couple



Figure 4. Metacat’s commentary for a run of “abc) abd; xyz) ?” in
which it found the answers xyd and xyz.

of times and then answers xyd. As it happens, the answer xyd re-
minds the program of a similar answer to a different problem that it
has already encountered. Continuing on, the program then finds the
“do-nothing” answer xyz, based on the rule Change letter-category
of letter ‘c’ to ‘d’. This rule is even more literal-minded than the
rule Change letter-category of rightmost letter to ‘d’. At this point,
prompted by the user, the program compares the answer xyz to the
answer xyd, expressing a preference for the latter answer.

From this example, it may appear that Metacat possesses a sophis-
ticated linguistic ability. However, it must be stressed that this is not
the case. In fact, the program’s ability to “speak” arises purely from
a flexible set of prefabricated phrase-templates that get filled in and
combined in complicated ways, according to context. For example,
in the run shown in Figure 4, the explanation of the snag is generated
on the basis of the concepts and Workspace structures involved in
the snag—namely, the Slipnet concept Letter-Category, the letter z,
the Slipnet concept successor, and the Workspace string xyz. As an
added touch, the second time the program hits the snag, it inserts the
word “again”, on account of the fact that a previous snag event exists
in the Temporal Trace. In addition, the program uses canned phrases
to describe various numerical measures, such as the overall quality
of an answer (e.g., “pretty mediocre”, “pretty bad”) or the degree of
reminding of one answer by another (e.g., “strongly”). See [15] for a
detailed discussion of Metacat’s mechanisms for generating English

commentary. Furthermore, no type of linguistic interaction with the
program is possible. For instance, asking the program to compare
two answers is accomplished simply by clicking on graphical icons
associated with the answers.

Metacat’s English-language veneer, although deceptive in a cer-
tain sense, is not intended to deceive. Rather, it is intended simply
to show the various things that happen during the course of a run, in
a somewhat whimsical but very user-friendly fashion. In the case of
comparing two answers, it is intended to summarize the various par-
allels and distinctions between the answers that are perceived by the
program, in an easy-to-understand way. Answers are compared on
the basis of their underlying conceptual representations, which con-
sist of the themes and Slipnet concepts stored in answer descriptions.
Metacat’s ability to compare answers at this representational level is
what really counts, not its ability to generate English summaries of
these comparisons.

That said, it is worth adding that not all of the words used by the
program are completely devoid of semantic content. To be sure, many
of them are (e.g., “okay”, “think”, “mediocre”, “I”, “me”, and so on).
However, some of them, such as “letter”, “letter-category”, “groups”,
“successor”, and “direction”, reflect concepts that the program does
understand—in a more genuine and quite defensible sense—about
its letter-string world. These words correspond to Slipnet concepts,
which become activated to different degrees according to the per-
ceptual context at hand, and are thus grounded within the program’s
microworld. See [9, Chapter 6] for a fuller discussion of this point.

The following is a sampling of Metacat’s explanations of the sim-
ilarities and differences between some of the analogies in Table 1.
To generate these explanations, the program was first run (in justify
mode) on each of the answers, and then asked to compare them. The
figures show the output generated by the program.

In Figure 5, the program compares the answers wyz and xyd to
the problem “abc) abd; xyz) ?”, and explains why it considers
wyz to be the better analogy. The phrase “a richer set of ideas” refers
to the fact that wyz’s answer description contains more themes than
xyd’s description.

Figure 5. abc) abd; xyz) xyd versus abc) abd; xyz)wyz

The next three figures illustrate answer comparison between dif-
ferent problems, namely, “abc) abd; xyz) ?” and “rst) rsu;
xyz) ?”. In Figure 6, the program explains why it considers the
answers xyd and xyu to be fundamentally the same analogy. As the
program notes, the rules giving rise to these answers are very simi-
lar, since they both involve changing the rightmost letter in a literal-
minded way. The program assigns a rating of “pretty mediocre” to
each answer, based on the low degree of abstractness of the answers’
underlying themes and rules.

In Figure 7, the two wyz answers are compared. In this case,
the program recognizes the essential difference between these
analogies—namely, the presence of alphabetical symmetry in one but
not the other—despite the superficial similarity of the two answers.



Figure 6. abc) abd; xyz) xyd versus rst) rsu; xyz) xyu

Figure 7. abc) abd; xyz)wyz versus rst) rsu; xyz)wyz

Figure 8. abd) abd; xyz) dyz versus rst) rsu; xyz)uyz

In Figure 8, the program compares the answers dyz and uyz,
each of which involves a somewhat incoherent blend of abstract and
literal-minded perspectives. Just as in the earlier wyz/wyz case, the
program identifies the presence or absence of alphabetical symmetry
as the fundamental difference between these two analogies. It also
notes their peculiar incoherence, expressing a preference for uyz. The
reason is that since abc and xyz are completely symmetric in every
way, while rst and xyz are not, changing xyz to dyz seems an even
sillier thing to do than changing xyz to uyz, at least in the program’s
judgment. Thus it considers dyz to be even more incoherent than uyz.

4.2 Reminding

Closely related to answer comparison is the phenomenon of remind-
ing, in which one answer may trigger the spontaneous retrieval from
memory of other answers that are in some way similar. This may
happen whenever a new answer is discovered (or justified) by the
program. When a new answer is found, the answer description cre-
ated from the information in the Trace acts as an index into memory,
causing other stored answer descriptions to become activated in pro-
portion to their degree of similarity. Similarity between answer de-
scriptions is determined by a numerical measure from 0 to 100 called
the distance, which measures the amount of overlap of the answer
descriptions’ themes and concepts. If the activation level of an an-
swer description exceeds some threshold, Metacat will be reminded
of the answer, with the activation level corresponding to the strength
of recall.

In addition to remembering its answers, Metacat also remembers

Figure 9. Six answer descriptions and one snag description stored in
Metacat’s Episodic Memory.

the snags that it encounters while solving problems on its own. On
hitting a snag for the first time, the program creates an abstract snag
description that characterizes the situation (in addition to creating a
new snag event in the Temporal Trace), which it then stores in mem-
ory. Like answer descriptions, snag descriptions consist of themes
and Workspace structures (i.e., those directly responsible for causing
the snag), and are used by the program in comparing and contrasting
answers with one another.

Figure 9 shows an example of the state of Metacat’s memory upon
discovering the answer wyz to the problem “rst) rsu; xyz) ?”, af-
ter having encountered several other answers to this problem and to
the problem “abc) abd; xyz) ?”. In addition, a snag description
for the latter problem exists. The activation levels of answers are in-
dicated by shades of grey, ranging from white for the most strongly-
activated answers to dark grey for completely dormant answers—so
that the less activated an answer is, the more it appears to fade into
the background of Metacat’s memory. In the present situation, the
wyz answer just found is (not surprisingly) the most strongly acti-
vated. As can be seen, this answer partially activates the other wyz
answer, and, to a lesser extent, uyz. The other answers, however, are
too distant from wyz to be recalled. As a result, the program reports
in its Comment Window that the newly-found answer “somewhat”
reminds it of the other wyz answer, and “vaguely” reminds it of uyz.
These terms are chosen on the basis of the activation levels of the
answer descriptions.

Storing snag descriptions in memory enables Metacat to “appre-
ciate” certain answers in ways that otherwise would not be possible.
For example, consider the problem “eqe) qeq; abbbc) ?”. In this
problem, eqe gets turned “inside-out”, an idea that can be captured
by the rule Swap letter-categories of all objects in string. However,
it is not so easy to do “the same thing” to abbbc, since three differ-
ent letter-categories are involved, instead of just two. One creative
way out of this quandary is to reperceive abbbc as 1–3–1 and then
swap the group-lengths rather than the letter-categories, yielding the
answer aaabccc. Unfortunately, Metacat is unable to get this answer
on its own, because it is incapable of perceiving eqe or 1–3–1 as
single, unified chunks, due to the absence of predecessor, successor,



or sameness relations between the adjacent parts. Consequently, it is
unable to connect the idea of letter to the idea of number at a global
level, and thus never sees these ideas as playing analogous roles in
eqe and abbbc. Instead, the program ends ends up repeatedly trying
to swap the letter-categories of a, bbb, and c, hitting a snag each time.
On the other hand, if the answer aaabccc is provided to Metacat by
the user, the program can make sense of it, although it still considers
the connection between letter and number to be an “unjustified” idea.

The same is true for the answer aaabaaa to the related prob-
lem “eqe) qeq; abbba) ?”. Metacat can (almost) make sense of
it, but cannot get it on its own. However, there is a crucial differ-
ence between aaabaaa and aaabccc. In the problem “eqe) qeq;
abbba) ?”, there is no good reason to view abbba as 1–3–1 , since
swapping letter-categories is perfectly feasible. That is, no snag
arises in this problem. In a sense, then, the answer aaabccc is the
better analogy, since seeing abbbc as 1–3–1 provides an elegant and
creative way around a snag, while seeing abbba as 1–3–1 is unnec-
essary. Metacat can make this observation, but it can only do so if it
knows that the problem “eqe) qeq; abbbc) ?” usually leads to a
snag. If it has tried this problem on its own, it will know this, because
the appropriate snag description will exist in memory. Conversely, if
it is shown the answer aaabccc without having first attempted the
problem itself, it will remain unaware of the possibility of a snag
arising. In this way, snag descriptions enable the program to perceive
subtle distinctions between certain analogies.

The following experiment illustrates this behavior. First, Metacat’s
memory was cleared in order to reset the program to a “tabula rasa”
state. It was then shown the analogy eqe) qeq; abbba) aaabaaa
and asked to justify it. At the end of the run, the program cre-
ated an answer description for aaabaaa, which it then stored in
memory. Next, the program was shown the analogy eqe) qeq;
abbbc) aaabccc. At the end of the second run, the program reported
that aaabccc strongly reminded it of the first answer, aaabaaa. At
this point, the program had not yet attempted to solve “eqe) qeq;
abbbc) ?” on its own, and therefore did not know that it normally
gives rise to a snag. When asked to compare these two analogies,
the program reported that it saw essentially no differences between
them. Figure 10 shows the program’s commentary.

The program was then reset to a tabula rasa state and given the
problem “eqe) qeq; abbbc) ?” to work on its own (i.e., with no
answer provided). After attempting unsuccessfully to swap the let-
ters of abbbc a couple of times, the program settled on the more
literal-minded answer qeeeq. However, this resulted in the creation
of a snag description for this problem in memory. Next, the pro-
gram was shown the analogy eqe) qeq; abbba) aaabaaa, as be-
fore, and asked to justify it, after which it was shown eqe) qeq;
abbbc) aaabccc. This time, the program reported that aaabccc re-
minded it only vaguely of aaabaaa, indicating that it perceived the
analogies as being quite different—although still recognizably re-
lated. The program’s commentary is shown in Figure 11.

5 DISCUSSION

A number of researchers have developed cognitive models that ex-
hibit some of the flavor of Metacat and Copycat—particularly in their
focus on emergent processing as a consequence of many nondeter-
ministic micro-actions occurring in parallel, and the idea of spread-
ing activation among nodes of a semantic network in response to
context-dependent pressures. The DUAL cognitive architecture, de-
veloped by Kokinov and incorporated into the AMBR model of hu-
man reasoning by Kokinov and Petrov, is one such model [10, 11]. In

Figure 10. aaabaaa versus aaabccc before encountering the snag.

Figure 11. aaabaaa versus aaabccc after encountering the snag.

addition, much work has been done on other issues that figure promi-
nently in Metacat, such as analogy-making and reminding (see, for
example, [6, 19, 7, 1]).

Of particular interest are case-based reasoning (CBR) approaches
to modeling creativity and analogy [14, 12, 13]. Metacat touches on
many of the fundamental issues underlying research in CBR. For
instance, answer descriptions stored in Metacat’s memory can be
likened to cases in CBR, in the sense that they form a corpus of
experience on which the program can draw when faced with new
situations. When Metacat finds a new answer, its stored experiences
may cause it to be reminded of similar answers it has seen in the past,
in a way that is reminiscent of the retrieval of previously-stored cases
from memory in CBR according to their degree of similarity to the
current situation. The retrieved answer can then be compared to the
current answer on the basis of the thematic information stored with
it. This is roughly akin to comparing two cases in CBR in order to see
how the cases are similar (i.e., which aspects of the stored case can
be applied directly, without modification, to the current situation),
and how the cases differ (i.e., which aspects must be adapted to fit
the new situation).

However, there are important differences between CBR and Meta-
cat. First of all, even though Metacat is concerned with solving anal-
ogy problems, it is not intended to model problem-solving per se.
Rather, its focus is on modeling the way in which context-sensitive
concepts allow analogies between different situations to be perceived
in a natural and psychologically plausible manner. It is more con-
cerned with analogical perception in general, than with analogical
reasoning employed specifically as a tool for solving problems. Fur-
thermore, the emphasis in much CBR work has often been on sys-
tems that learn to solve problems in a progressively faster and more
efficient manner, whereas in Metacat the notion of learning to per-
ceive analogies with ever increasing efficiency and speed is irrele-
vant. This point is less applicable, however, to some of the more re-
cent CBR-based approaches to modeling creativity (see, for example,
[2, 4]).

As was mentioned earlier, Metacat is actually closer to work on



derivational analogy than to ordinary case-based approaches that
store only a final problem solution. In contrast to derivational anal-
ogy and CBR, however, Metacat (like Copycat) is deeply concerned
with the nature and representation of concepts. One of the prime
objectives of this research is to explore how adaptable, context-
sensitive concepts can give rise to understanding by enabling analo-
gies between apparently dissimilar situations to be perceived. Meta-
cat’s concepts, to be sure, come nowhere close to exhibiting the full
power and fluidity of human concepts. Nevertheless, there is a sense
in which they are genuinely meaningful entities—not just empty
static symbols that get shunted around by the program. A concept
or theme—take successor, for example—responds to the situation at
hand in a continuous, context-dependent way, reflecting the degree
of perceived relevance of the idea of successorship in the Workspace
at any given moment. A wide range of superficially dissimilar situa-
tions, represented abstractly as letter-strings, can in principle activate
it—strings such as abc, ijk, pqrst, iijjkk, mrrjjj, xxsssbbbb, axypqr,
and aababcabcd. Under the right circumstances, all of these strings
can be interpreted by the program as examples of successor-groups.
Given the program’s ability to flexibly recognize a wide range of in-
stances of the same concept, some of them quite abstract, it seems
fair to say that Metacat’s concepts have at least some small degree of
meaningfulness, or genuine semantics, within the confines of its tiny,
idealized world.

Work on Metacat is aimed at deepening Copycat’s understand-
ing of its answers by incorporating mechanisms for self-monitoring,
memory, and reminding into the program. Many important ideas
from case-based reasoning are relevant to this aim, such as the stor-
ing of past experiences as a repertoire of cases in memory, and the
recall of stored cases by new, similar situations. Unfortunately, case-
based reasoning research concentrates on these issues at the expense
of understanding the nature of concepts and how they interact with
perception. We worry that CBR’s ultimate success—at least as a cog-
nitive model—will be limited on account of its avoidance of this very
difficult but critically important question. In contrast, Metacat can be
seen as an attempt to broaden and enrich these ideas by focusing on
them within a framework of fluid, context-sensitive concepts that are
grounded in the program’s microworld.

6 CONCLUSION

The examples presented in this paper convey the flavor of Metacat’s
ability to “talk” about its answers in various ways. Clearly, much is
going on beneath the surface here. The program’s ability to recall
previously-encountered answers, and to explain the similarities and
differences between answers in a plausible fashion, relies on stor-
ing abstract representations of answers in long-term memory. Like
Copycat’s Slipnet, Metacat’s Slipnet serves as the program’s ultimate
repository for its knowledge of concepts about the letter-string mi-
croworld. These concepts acquire their semantics solely through the
ways in which they become activated in response to situations aris-
ing in this world. Accordingly, they represent the substrate on which
the program’s understanding of its answers is based. Therefore, it
is important to emphasize the fact that answer descriptions are ul-
timately just organized patterns of Slipnet concepts, since they are
composed of themes and rules (which in turn are composed of con-
cepts). The English-language commentary generated by the program
about analogies, although just a surface-level “gloss” in many ways,
nevertheless rests on a deeper foundation of conceptual representa-
tion.
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